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Preface

This book on Innate Antiviral Immunity explores methods to study the complex and
evolving interplay between a virus and its host that range from model systems to the
detection of chemical molecules. The collection starts with the application of humanized
mice and zebrafish as model organisms to study virus-host interactions and induction of
innate immune responses. Subsequent chapters outline diverse methods to detect small
interfering RNAs, microRNAs, and virus-derived dsRNA from a variety of cells, tissues, and
organisms. Several chapters are dedicated to interrogating the cytosolic RNA and DNA
sensing pathways, including using RNA PAMPs as molecular tools, purification of cGAMP
from virus particles and infected cells, and mechanisms to visualize the subcellular localiza-
tion and activation of the adaptor proteins MAVS and STING. Cutting-edge methods,
including high-throughput and genome-wide CRISPR/Cas9 screens, chromosome confor-
mation capture, and whole-exome sequencing, are described to identify novel mediators,
pathways, and variants underlying host susceptibility. Given the importance of studying
these pathways and players under physiologic conditions, methods describing the isolation
of primary mouse sensory neurons and group 2 innate lymphoid cells are also provided.
Finally, this collection comes full circle back to the whole organism level and concludes with
epidemiological methods to investigate virus-host interactions and the induction of innate
immunity. Thus, this collection in Methods in Molecular Biology spans a diverse array of
approaches to study and elucidate the intricacies of innate antiviral immunity.

Hamilton, ON, Canada Karen Mossman
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Chapter 1

The Application of Humanized Mouse Models for the Study
of Human Exclusive Viruses

Fatemeh Vahedi, Elizabeth C. Giles, and Ali A. Ashkar

Abstract

The symbiosis between humans and viruses has allowed human tropic pathogens to evolve intricate means
of modulating the human immune response to ensure its survival among the human population. In doing
so, these viruses have developed profound mechanisms that mesh closely with our human biology. The
establishment of this intimate relationship has created a species-specific barrier to infection, restricting the
virus-associated pathologies to humans. This specificity diminishes the utility of traditional animal models.
Humanized mice offer a model unique to all other means of study, providing an in vivo platform for the
careful examination of human tropic viruses and their interaction with human cells and tissues. These types
of animal models have provided a reliable medium for the study of human-virus interactions, a relationship
that could otherwise not be investigated without questionable relevance to humans.

Key words Animal models, Disease Models, Human, Humanized mice, Immune system, Viruses

1 Introduction

1.1 Why Do We Need

the Humanized Mouse

Model for the Study of

Human Tropic

Viruses?

As viruses progress through the process of infection, environmental
pressures from within the host demand the virus develop adaptive
strategies to ensure its survival. The most fit viral particles are
selected, which then produce incredible amounts of viral descen-
dants proficient in manipulating the susceptible host for continued
viral replication, survival, and transmission [1]. The immune
responses to a pathogen contain distinct mechanisms unique to
the infected host species, creating successful viral progeny highly
skilled in manipulating the host through which selection occurred.
These species differences create a profoundly specific interaction
between the pathogen and its co-evolved host [1, 2]. The scientific
journey to fully comprehend the relationship developed between
human and virus has been incredibly strenuous. Following the
formal recognition of the ethical concerns behind the use of

Karen Mossman (ed.), Innate Antiviral Immunity: Methods and Protocols, Methods in Molecular Biology,
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human subjects [3], the severe restrictions placed on human
experimentation necessitate alternative models to study human
disease [4].

In vitro models serve as fundamental tools to study the viral life
cycle. Cell culture systems provide a carefully controlled platform
for the examination of how the virus enters its tropic cell lines,
replicates, assembles, and secretes budding viral progeny [5]. How-
ever, in vitro systems are highly isolated conditions unable to
recreate the dynamic features present within an in vivo environment
[6]. The absence of these features sources discrepancy between
results derived from the use of an in vitro system and results
obtained from in vivo investigation. Furthermore, features highly
influential on viral infection are commonly altered within cell lines.
Oftentimes genes and cell cycle profiles are expressed in a way
unorthodox to the cells present within a living organism [7]. Alter-
natively, in vivo models resolve this problem presented in in vitro
cultures. The quintessential model for the investigation of human
and virus interactions would permit invasive examination into an
infected host with an internal environment capable of manifesting
disease outcome as if it were a human [8, 9]. However, the co-
evolutionary history established between virus and human has
created a relationship of intimacy between pathogen and host that
cannot be truly replicated in traditional in vitro or in vivo models
[9]. The value of this model is placed in its ability to provide a
means for investigating the biological activity that occurs within a
host throughout the process of viral infection [8, 9].

Nonhuman primates have become an incredibly valued tool for
enriching our understanding of the mechanisms underlying the
pathogenic process of viral infection and revealing the potential
clinical efficacy of antiviral therapeutics [10, 11]. Their value is a
result of their close phylogenetic relation to humans [10, 11],
providing a model capable of closely resembling human biology
[11]. However, this close phylogenetic relationship is what brings
ethical concerns, in which the complexity of debate with regards to
their use continues to grow [12, 13]. The difficulty in using non-
human primates stems from their tight regulation [13, 14],
demanding requirements for proper care [14], and high cost
which limits cohort size [2, 9]. Even with their close phylogenetic
relationship, the representation of disease pathogenesis remains
inaccurate. Several diseases impact humans in a more severe manner
than they do in nonhuman primates, discrepancies likely attributed
to the inter-species immune system differences [2, 15]. Consider-
ing these growing limitations, it is ill advised to remain dependent
on nonhuman primate experimentation [13].

The mouse model offers an abundant resource of genetic diver-
sity and permits the creation of unique strains of transgenic mice
since they can tolerate extensive genetic manipulation [9, 16].
Additionally, mice are capable of achieving pure strains, allowing

2 Fatemeh Vahedi et al.



for the generation of reproducible results during experimentation
[9]. These factors have established the mouse as the dominating
animal in research [16]. However, even such a fundamental model
is not suited to recreate the pathogenic process of every virus,
especially those with highly species specific cellular tropism [16].
Human tropic pathogens have developed specific molecules and
factors that have been established to interact with and manipulate
the specific components of its co-evolved human host [1]. Tradi-
tional animal models, no matter the species, if they are other than
human, will not show the interaction of human cells with the virus
[9, 13]. Additionally, within the environment of these surrogate
models, the replication and progression of disease is often unable to
occur as a result of the species barrier. Humanized mice remove this
barrier to infection and disease progression, thus offering a unique
means of investigating viral pathogenesis [13, 17].

1.2 Humanized Mice:

A Practical Solution

for the In Vivo Study

of Human-Specific

Viral Infection

Several types of humanized mouse models exist, each displaying
unique features of the pathogenic process of human infection. To
“humanize” a mouse, human cells or tissues are engrafted into a
recipient mouse with an injury in the murine equivalent organ you
wish to examine. In attempts to remove the occurrence of xeno-
graft rejection, mice with an immunodeficient background are
used. Depending on the cellular and tissue tropism of the virus,
various human organs would be implanted accordingly [9, 18].
Cells engrafted into the recipient mice retain their functional capac-
ity, occupy their respective murine niches, and offer the virus its
susceptible and permissive cells for viral infection and spread [9,
13]. In an ideally constructed humanized mouse model, the viral
pathogen goes about infection as it would if it were in its human
host, and the mouse responds as if it were a human [8, 9, 13].

A highly involved component in human viral infection is the
human immune system. Thus, the study of the immune system and
its interaction with the virus is an important component in under-
standing viral pathogenesis. Appropriately, the types of humanized
mice frequently used for the study of viral infection are often
reconstituted with human immune cells. Although the term
“humanized mice” extends beyond the implantation of human
immune cells, this is a primary method of humanization in the
study of infectious disease. In fact, the study of major human
pathogens such as Dengue (DENV), Ebola (EBOV), Epstein-
Barr (EBV), human cytomegalovirus (HCMV), Human T-cell Leu-
kemia Type-1 (HTLV-1), Human Immunodeficiency virus (HIV),
and Hepatitis C (HCV) often involves the use of this type of
humanized mouse model.

For simplicity’s sake, human immune system (HIS) mice can be
categorized into two types: mice created by the transplantation
human hematopoietic stem cells (HSCs) or peripheral blood
mononuclear cells (PBMCs) into a recipient immunodeficient

Humanized Mice and Human Viral Infection 3



mouse [8, 19]. In using HSCs, human T and B cell progenitors are
able to go through the maturation process in the environment of
the mouse recipient. As a result, negative and positive selection of
the human immune cells occurs within the mouse, giving the
immune cells an opportunity to develop a tolerance toward the
murine host [19]. The PBMC model does not provide this process
however, the transplantation of functionally mature leukocytes
allows for human immune cell function to be examined more
immediately [19]. Reservoir sources of HSCs often used in mouse
humanization include umbilical cord blood, mobilized peripheral
blood [19, 20], bone marrow, and fetal liver [19, 21]. Studies have
also utilized thymus, lymph node, and skin [22]. Each source
allows for the subsequent reconstitution of human immune cell
components [19]. These sources have been used in combination,
such as the bone marrow, liver, thymus (BLT) model [23], and the
SCID-hu thymus and liver (SCID-hu Thy/Liv) mouse, in which
SCID (severe combined immunodeficient) mice are engrafted with
human thymus and liver tissue [24], or used individually. Compar-
atively, PBMCs can be obtained in a simple process from either
whole blood samples or spleens [19]. An incredible aspect of
“humanizing” immunodeficient mice is how with different sources
of human immune cells, the reconstitution of human immune cell
populations, and subsequently, the display of infection, can be
presented in very different ways depending on the source [13].

1.3 The Gradual

Transformation of the

Humanized Mouse

Model

The evolution of the humanized mouse has coincided with the
advancements in the immunodeficient mouse models. The devel-
opment of a more sophisticated immunodeficient strain of recipient
mice has allowed for enhanced engraftment and reconstitution of
human components within their respective murine biological
niches [8, 9, 13]. Attempts to construct a human hematolymphoid
system within a mouse model began with athymic (nude) mice
[25]. The significant depletion of T cell maturation and T cell
activity gave them promise [9, 26, 27]. Unfortunately, despite
extensive efforts, results were continually unsatisfactory and the
successful engraftment of normal human tissues appeared impossi-
ble [25]. It was the remaining components of the murine immune
system, functional B cells and natural killer (NK) cells that created
significant obstacles to achieving adequate humanization. The pres-
ence of these cells leads to the gradual rejection of transplanted
human cells and tissues [9].

In 1983 [28], the discovery of the severe combined immuno-
deficient (SCID) mouse greatly enhanced the humanization pro-
cess [8]. A spontaneous mutation within the Prkdc (protein kinase,
DNA activated, catalytic polypeptide) gene of C.B-17 mice was
found to produce mice with serious depletions in the functional
capacity of the murine B and T lymphocytes. The reconstitution of
the human immune system is enhanced within SCID mice in
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comparison to athymic mice; however, they do not come without
limitations. SCIDmice undergo a phenomenon termed “leakiness”
in which murine T and B cells are spontaneously generated
throughout the natural aging process of the mouse. This sporadic
production of functional murine T and B cells interferes with the
engrafted human cells, eventually causing rejection of the human
graft. An additional factor at play is the presence of high function-
ing NK cells and other innate immune cell types of mouse origin,
recognizing the human cells as foreign, thus disrupting successful
engraftment [8, 29].

In 1992, in efforts to remove the problem of “leakiness” and
enhance the ability of recipient mice to accept human tissues and
cells, Mombaerts et al. [30] and Shinkai et al. [31] created mice
with targeted mutations in the V(D)J recombination-activating
gene 1 and 2 (Rag 1/2) loci, respectively [8]. The presence of
these mutations removes the natural process of T and B lymphocyte
maturation [8, 30, 31]. These mutant mice retain high levels of NK
cell activity, restricting their engraftment potential [8, 31]. In
1995, Shultz et al. were able to mitigate the problem of the persist-
ing murine innate immune response. Through a process of back-
crossing the SCID mutation onto the non-obese diabetic (NOD/
Lt) mouse background, Shultz et al. created the NOD/SCID
mouse, containing several functional deficiencies in the murine
innate and adaptive immune response [8, 9, 31, 32]. Accordingly,
these mice have allowed for improved reconstitution of human
hematopoietic stem cells. However, this improved model remains
to have several faults, complicating its use for accepting human cells
and tissues, and studying virally induced pathologies [8, 32].
NOD/SCID mice contain residual NK cell and innate immune
cell function and possess a fairly limited life span. The presence of
these interfering factors enables the problem of impaired engraft-
ment to persist in the NOD/SCID mouse model [32]. In the mid-
2000s, the introduction of a targeted mutation in the interleukin
(IL)-2 receptor gamma chain loci (IL-2rg) caused mice to develop
severe impairments in the maturation process and functional capac-
ity of B and T cells, and eradicated NK cell development [8, 9, 13,
33]. These immunodeficient mutations have been combined to
recreate numerous types of immunodeficient mice, often enhancing
the immune depletions and thus the engraftment success within the
mice [8, 9].

To recreate a functional human immune system within a
mouse, the process requires more than just the immune cells itself.
For the development, survival, and function of human hematolym-
phoid cells, there are a number of hormones, growth factors, and
cytokines essential to ensure optimal health and function of human
cells [25]. The presence of residual immune system components

Humanized Mice and Human Viral Infection 5
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